Add like
Add dislike
Add to saved papers

Impaired Thiamine Metabolism in Amyotrophic Lateral Sclerosis and Its Potential Treatment With Benfotiamine: A Case Report and a Review of the Literature.

Curēus 2023 June
Homogenates of brain tissue from the frontal cortex at autopsy in patients with amyotrophic lateral sclerosis (ALS) showed dramatically reduced levels of the enzyme thiamine pyrophosphatase (TPPase), the enzyme responsible for the conversion of thiamine pyrophosphate (TPP) to thiamine monophosphate (TMP). Additionally, free thiamine (vitamin B1) and TMP levels have been shown to be significantly reduced in the plasma and cerebral spinal fluid (CSF) of patients with ALS. These findings suggest that there is impaired thiamine metabolism in patients with ALS. Impaired thiamine metabolism decreases adenosine triphosphate (ATP) production and is a well-established cause of neurodegeneration. Decreased levels of TPPase, resulting in decreased levels of TMP in the cells of the frontal cortex, might account for the focal neurodegenerative changes observed in motor neurons in ALS. Benfotiamine, a safe, lipid-soluble, highly absorbable thiamine analogue, significantly raises free thiamine, TMP, and TPP levels in the blood. A case in which benfotiamine may have positively impacted the symptoms of a patient with ALS is presented. The use of benfotiamine in patients with ALS appears to be a promising therapeutic option. Considering the severity and the lack of satisfactory treatment options associated with this disease, more research on the effects of benfotiamine on the course of ALS is urgently needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app