Add like
Add dislike
Add to saved papers

Carbon Nanocluster-Mediated Nanoblending Assembly for Binder-Free Energy Storage Electrodes with High Capacities and Enhanced Charge Transfer Kinetics.

The effective spatial distribution and arrangement of electrochemically active and conductive components within metal oxide nanoparticle (MO NP)-based electrodes significantly impact their energy storage performance. Unfortunately, conventional electrode preparation processes have much difficulty addressing this issue. Herein, this work demonstrates that a unique nanoblending assembly based on favorable and direct interfacial interactions between high-energy MO NPs and interface-modified carbon nanoclusters (CNs) notably enhances the capacities and charge transfer kinetics of binder-free electrodes in lithium-ion batteries (LIBs). For this study, carboxylic acid (COOH)-functionalized carbon nanoclusters (CCNs) are consecutively assembled with bulky ligand-stabilized MO NPs through ligand-exchange-induced multidentate binding between the COOH groups of CCNs and the surface of NPs. This nanoblending assembly homogeneously distributes conductive CCNs within densely packed MO NP arrays without insulating organics (i.e., polymeric binders and/or ligands) and prevents the aggregation/segregation of electrode components, thus markedly reducing contact resistance between neighboring NPs. Furthermore, when these CCN-mediated MO NP electrodes are formed on highly porous fibril-type current collectors (FCCs) for LIB electrodes, they deliver outstanding areal performance, which can be further improved through simple multistacking. The findings provide a basis for better understanding the relationship between interfacial interaction/structures and charge transfer processes and for developing high-performance energy storage electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app