Add like
Add dislike
Add to saved papers

Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi-Ag-Mg-Type Solder.

Materials 2023 April 11
This research aimed to study a Bi-Ag-Mg soldering alloy and the direct soldering of Al2 O3 ceramics and Ni-SiC composites. Bi11Ag1Mg solder has a broad melting interval, which mainly depends on the silver and magnesium content. The solder starts to melt at a temperature of 264 °C. Full fusion terminates at a temperature of 380 °C. The microstructure of the solder is formed by a bismuth matrix. The matrix contains segregated silver crystals and an Ag (Mg, Bi) phase. The average tensile strength of solder is 26.7 MPa. The boundary of the Al2 O3 /Bi11Ag1Mg joint is formed by the reaction of magnesium, which segregates in the vicinity of a boundary with a ceramic substrate. The thickness of the high-Mg reaction layer at the interface with the ceramic material was approximately 2 μm. The bond at the boundary of the Bi11Ag1Mg/Ni-SiC joint was formed due to the high silver content. At the boundary, there were also high contents of Bi and Ni, which suggests that there is a NiBi3 phase. The average shear strength of the combined Al2 O3 /Ni-SiC joint with Bi11Ag1Mg solder is 27 MPa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app