Add like
Add dislike
Add to saved papers

Fabrication of a Zircon Microfiltration Membrane for Culture Medium Sterilization.

Membranes 2023 March 32
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand and calcite (natural raw materials), using extrusion and uniaxial pressing methods, respectively. Making use of the slip casting technique, the silica sand intermediate layer and the zircon top-layer were deposited on the supports, in this order. The particle size and the sintering temperature for each layer were optimized to achieve a suitable pore size for the deposition of the next layer. Morphology, microstructures, pore characteristics, strength and permeability were also studied. Filtration tests were conducted to optimize the permeation performance of the membrane. Experimental results show that the total porosity and average pore size of the porous ceramic supports sintered at different temperatures within the range (1150-1300 °C), and lie in the ranges of 44-52% and 5-30 μm, respectively. For the ZrSiO4 top-layer, after firing at 1190 °C, a typical average pore size of about 0.3 μm and a thickness of about 70 μm were measured, while water permeability is estimated to a value of 440 lh-1 m-2 bar-1 . Finally, the optimized membranes were tested in the sterilization of a culture medium. Filtration results show the efficiency of the zircon-deposited membranes for bacteria removal; indeed, the growth medium was found to be free of all microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app