Add like
Add dislike
Add to saved papers

Downregulation of ROR2 attenuates LPS-induced A549 cell injury through JNK and ERK signaling pathways.

BACKGROUND: We aimed to determine whether receptor tyrosine kinase-like orphan receptor 2 (ROR2) is involved in the occurrence of acute lung injury (ALI) by an animal study and explore the effect of ROR2 downregulation on lipopolysaccharide (LPS)-treated human lung carcinoma A549 cells by a cytological study.

METHODS: Murine models of ALI were successfully constructed by intratracheal instillation of LPS. Meanwhile, A549 cell line stimulated with LPS was used for a cytological study. The expression of ROR2 and its effect on proliferation, cell cycle, apoptosis, and inflammation were detected.

RESULTS: It was found that LPS administration markedly inhibited the cell proliferation, resulted in cell cycle arrest at G1 phage, elevated levels of pro-inflammatory cytokines and apoptosis rate of A549 cells. However, LPS-mediated adverse effects mentioned above were significantly ameliorated by downregulation of ROR2 in comparison with LPS treatment. In addition, administration of ROR2 siRNA notably decreased the phosphorylation level of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in LPS-challenged A549 cells.

CONCLUSIONS: Thus, the present data indicate that downregulation of ROR2 may decrease LPS-induced inflammatory responses and cell apoptosis through inhibiting JNK and ERK signaling pathway, which attenuates ALI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app