Journal Article
Review
Add like
Add dislike
Add to saved papers

Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment.

The circulating cell-free nucleic acids (ccfNAs) consist of a heterogenous cocktail of both single (ssNA) and double-stranded (dsNA) nucleic acids. These ccfNAs are secreted into the blood circulation by both healthy and malignant cells via various mechanisms including apoptosis, necrosis, and active secretion. The major source of ccfNAs are the cells of hematopoietic system under healthy conditions. These ccfNAs include fragmented circulating cell free DNA (ccfDNA), coding or messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and mitochondrial DNA/RNA (mtDNA and mtRNA), that serve as prospective biomarkers in assessment of various clinical conditions. For, e.g., free fetal DNA and RNA migrate into the maternal plasma, whereas circulating tumor DNA (ctDNA) has clinical relevance in diagnostic, prognostic, therapeutic targeting, and disease progression monitoring to improve precision medicine in cancer. The epigenetic modifications of ccfDNA as well as circulating cell-free RNA (ccfRNA) such as miRNA and lncRNA show disease-related variations and hold potential as epigenetic biomarkers. The messenger RNA present in the circulation or the circulating cell free mRNA (ccf-mRNA) and long non-coding RNA (ccf-lncRNA) have gradually become substantial in liquid biopsy by acting as effective biomarkers to assess various aspects of disease diagnosis and prognosis. Conversely, the simultaneous characterization of coding and non-coding RNAs in human biofluids still poses a significant hurdle. Moreover, a comprehensive assessment of ccfRNA that may reflect the tumor microenvironment is being explored. In this review, we focus on the novel approaches for exploring ccfDNA and ccfRNAs, specifically ccf-mRNA as biomarkers in clinical diagnosis and prognosis of cancer. Integrating the detection of circulating tumor DNA (ctDNA) for cancer genotyping in conjunction with ccfRNA both quantitatively and qualitatively, may potentially hold immense promise towards precision medicine. The current challenges and future directions in deciphering the complexity of cancer networks based on the dynamic state of ccfNAs will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app