Add like
Add dislike
Add to saved papers

Attention guided neural ODE network for breast tumor segmentation in medical images.

Breast cancer is the most common cancer in women. Ultrasound is a widely used screening tool for its portability and easy operation, and DCE-MRI can highlight the lesions more clearly and reveal the characteristics of tumors. They are both noninvasive and nonradiative for assessment of breast cancer. Doctors make diagnoses and further instructions through the sizes, shapes and textures of the breast masses showed on medical images, so automatic tumor segmentation via deep neural networks can to some extent assist doctors. Compared to some challenges which the popular deep neural networks have faced, such as large amounts of parameters, lack of interpretability, overfitting problem, etc., we propose a segmentation network named Att-U-Node which uses attention modules to guide a neural ODE-based framework, trying to alleviate the problems mentioned above. Specifically, the network uses ODE blocks to make up an encoder-decoder structure, feature modeling by neural ODE is completed at each level. Besides, we propose to use an attention module to calculate the coefficient and generate a much refined attention feature for skip connection. Three public available breast ultrasound image datasets (i.e. BUSI, BUS and OASBUD) and a private breast DCE-MRI dataset are used to assess the efficiency of the proposed model, besides, we upgrade the model to 3D for tumor segmentation with the data selected from Public QIN Breast DCE-MRI. The experiments show that the proposed model achieves competitive results compared with the related methods while mitigates the common problems of deep neural networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app