Add like
Add dislike
Add to saved papers

Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity.

Oil and gas production generates large amounts of brine wastewater called "produced water" with various geogenic and synthetic contaminants. These brines are generally used in hydraulic fracturing operations to stimulate production. They are characterized by elevated halide levels, particularly geogenic bromide and iodide. Such salt concentrations in produced water may be as high as thousands of mg/L of bromide and tens of mg/L of iodide. Large volumes of produced water are stored, transported, reused in production operations, and ultimately disposed of by deep well injection into saline aquifers. Improper disposal may potentially contaminate shallow freshwater aquifers and impact drinking water sources. Because conventional produced water treatment typically does not remove halides, produced water contamination of groundwater aquifers may cause the formation of brominated and iodinated disinfection by-products (I-DBPs) at municipal water treatment plants. These compounds are of interest because of their higher toxicity relative to their chlorinated counterparts. This study reports a comprehensive analysis of 69 regulated and priority unregulated DBPs in simulated drinking waters fortified with 1 % (v/v) oil and gas wastewater. Impacted waters produced 1.3×-5× higher levels of total DBPs compared to river water after chlorination and chloramination. Individual DBP levels ranged from (<0.1-122 μg/L). Overall, chlorinated waters formed highest levels, including trihalomethanes that would exceed the U.S. EPA regulatory limit of 80 μg/L. Chloraminated waters had more I-DBP formation and highest levels of haloacetamides (23 μg/L) in impacted water. Calculated cytotoxicity and genotoxicity were higher for impacted waters treated with chlorine and chloramine than corresponding treated river waters. Chloraminated impacted waters had the highest calculated cytotoxicity, likely due to higher levels of more toxic I-DBPs and haloacetamides. These findings demonstrate that oil and gas wastewater if discharged to surface waters could adversely impact downstream drinking water supplies and potentially affect public health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app