Add like
Add dislike
Add to saved papers

A Novel Dynamic Operation Optimization Method Based on Multiobjective Deep Reinforcement Learning for Steelmaking Process.

This article studies a dynamic operation optimization problem for a steelmaking process. The problem is defined to determine optimal operation parameters that bring smelting process indices close to their desired values. The operation optimization technologies have been applied successfully for endpoint steelmaking, but it is still challenging for the dynamic smelting process because of the high temperature and complex physical and chemical reactions. A framework of deep deterministic policy gradient is applied to solve the dynamic operation optimization problem in the steelmaking process. Then, an energy-informed restricted Boltzmann machine method with physical interpretability is developed to construct the actor and critic networks in reinforcement learning (RL) for dynamic decision-making operations. It can provide a posterior probability for each action to guide training in each state. Furthermore, in terms of the design of neural network (NN) architecture, a multiobjective evolutionary algorithm is used to optimize the model hyperparameters, and a knee solution strategy is designed to balance the model accuracy and complexity of neural networks. Experiments are conducted on real data from a steelmaking production process to verify the practicability of the developed model. The experimental results show the advantages and effectiveness of the proposed method compared with other methods. It can meet the requirements of the specified quality of molten steel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app