Add like
Add dislike
Add to saved papers

Immediate and Late Effects of Pulse Widths and Cycles on Bipolar, Gated Radiofrequency-Induced Tissue Reactions in in vivo Rat Skin.

BACKGROUND: Single to multiple pulse packs of bipolar, alternating current radiofrequency (RF) oscillations have been used for various medical purposes using invasive microneedle electrodes. This study was designed to evaluate the effects of pulse widths and cycles of RF pulse packs on immediate and delayed thermal tissue reactions in in vivo rat skin.

METHODS: RF energy at the frequency of 1 MHz and power of 70 W was delivered at each experimental setting into in vivo rat skin at 1.5-mm microneedle penetration, and then, tissue samples were obtained after 1 h and 3, 7, 14, and 21 days and histologically analyzed.

RESULTS: A single-pulse-pack RF treatment generated coagulative necrosis zones in the dermal peri-electrode area and zones of non-necrotic thermal reactions in the dermal inter-electrode area. Multiple pulse-pack, RF-treated rat skin specimens revealed that the number and size of peri-electrode coagulative necrosis were markedly decreased by increasing the number of pulse packs and accordingly decreasing the conduction time of each pulse pack. The microscopic changes in RF-induced non-necrotic thermal reaction in the inter-electrode area were more remarkable in specimens treated with RF of 7 or 10 pulse packs than in specimens treated with RF of 1-4 pulse packs.

CONCLUSION: The gated delivery of multiple RF pulse packs using a bipolar, alternating current, 1-MHz RF system using insulated microneedle electrodes efficiently generates non-necrotic thermal tissue reactions over the upper, mid, and deep dermis and subcutaneous fat in the inter-electrode areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app