Add like
Add dislike
Add to saved papers

Effect of phytase and limestone particle size on mineral digestibility, performance, eggshell quality, and bone mineralization in laying hens.

Poultry Science 2023 Februrary 25
The effect of microbial phytase and limestone particle size (LmPS) was assessed in Lohmann Tradition laying hens from 31 to 35 wk of age. Seventy-two hens were used in a completely randomized trial according to a 2 × 2 factorial arrangement with 2 levels of phytase/basal available P (aP); 0 FTU/kg with 0.30% aP or 300 FTU/kg with 0.15% aP, and 2 limestone particle sizes; fine particles (FL, <0.5 mm) or a mix (MIX) of 75% coarse limestone (CL, 2-4 mm) and 25% FL. Diets contained equivalent levels of Ca (3.5%), phytic P (PP; 0.18%), and aP (0.30%) considering the P equivalency of phytase. Thus, dietary treatments were FL0 and MIX0 without phytase, and FL300 and MIX300 with 300 FTU/kg phytase. Performance were recorded daily and eggshell quality (eggshell weight proportion, weight, thickness, and breaking strength) was measured weekly. At the end of the trial, bone parameters (tibia breaking strength, elasticity, and ash) and the apparent precaecal digestibility (APCD) of P and Ca were determined. No differences were observed between treatments in feed intake, FCR and bone parameters. Addition of MIX increased the eggshell proportion, weight and thickness in groups receiving no phytase (+6.5, +6.9, and +4.5%, respectively) while no effect was observed in groups receiving phytase (Phytase × LmPS, P < 0.05). In hens receiving FL, the APCD of P was lower in diets supplemented with phytase (-14 percentage points; Phytase × LmPS, P < 0.001). A higher phytate disappearance was observed in hens fed diets with phytase in combination with MIX (Phytase × LmPS, P = 0.005). Phytase and MIX together increased the APCD of Ca by 7.3 percentage points (Phytase × LmPS, P < 0.001). In conclusion, addition of CL could limit the formation of Ca-phytate complex thus improving the response of the birds to phytase compared to FL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app