Add like
Add dislike
Add to saved papers

Novel NQO1 substrates bearing two nitrogen redox centers: Design, synthesis, molecular dynamics simulations, and antitumor evaluation.

Bioorganic Chemistry 2023 March 16
By analyzing the crystal structure of NQO1, an additional binding region for the ligand was discovered. In this study, a series of derivatives with a novel skeleton bearing two nitrogen redox centers were designed by introducing amines or hydrazines to fit with the novel binding region of NQO1. Compound 24 with a (4-fluorophenyl)hydrazine substituent was identified as the most efficient substrate for NQO1 with the reduction rate and catalytic efficiency of 1972 ± 82 μmol NADPH/min/μmol NQO1 and 6.4 ± 0.4 × 106 M-1 s-1 , respectively. Molecular dynamics (MD) simulation revealed that the distances between the nitrogen atom of the redox centers and the key Tyr128 and Tyr126 residues were 3.5 Å (N1 -Tyr128) and 3.4 Å (N2 -Tyr126), respectively. Compound 24 (IC50 /A549 = 0.69 ± 0.09 μM) showed potent antitumor activity against A549 cells both in vitro and in vivo through ROS generation via NQO1-mediated redox cycling, leading to a promising NQO1-targeting antitumor candidate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app