Add like
Add dislike
Add to saved papers

MafB-dependent neurotransmitter signaling promotes β cell migration in the developing pancreas.

Development 2023 March 9
Hormone secretion from pancreatic islets is essential for glucose homeostasis and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are critical for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also Neurog3+ endocrine progenitor cells suggesting additional functions in cell differentiation and islet formation. Here we report that MafB deficiency impairs β cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse β cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced β cell migration towards autonomic nerves and impaired β cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app