Add like
Add dislike
Add to saved papers

Lack of concentration-dependent local toxicity of highly concentrated (5%) versus conventional 0.5% bupivacaine following musculoskeletal surgery in a rat model.

PURPOSE: Various sustained-release formulations incorporate high bupivacaine concentrations but data on local toxicity is lacking. This study explores local toxic effects of highly concentrated (5%) bupivacaine compared to clinically used concentrations in vivo following skeletal surgery, to assess the safety of sustained-release formulations with high bupivacaine concentrations.

METHODS: Sixteen rats underwent surgery, in which screws with catheters affixed were implanted in the spine or femur in a factorial experimental design, allowing single-shot or continuous 72 h local administration of 0.5%, 2.5% or 5.0% bupivacaine hydrochloride. During the 30-day follow-up, animal weight was recorded and blood samples were obtained. Implantation sites underwent histopathological scoring for muscle damage, inflammation, necrosis, periosteal reaction/thickening and osteoblast activity. Effects of bupivacaine concentration, administration mode and implantation site on local toxicity scores were analyzed.

RESULTS: Chi-squared tests for score frequencies revealed a concentration-dependent decrease in osteoblast count. Moreover, spinal screw implantation led to significantly more muscle fibrosis but less bone damage than femoral screw implantation, reflecting the more invasive muscle dissection and shorter drilling times related to the spinal procedure. No differences between bupivacaine administration modes regarding histological scoring or body weight changes were observed. Weight increased, while CK levels and leukocyte counts decreased significantly during follow-up, reflecting postoperative recovery. No significant differences in weight, leukocyte count and CK were found between interventional groups.

CONCLUSION: This pilot study found limited concentration-dependent local tissue effects of bupivacaine solutions concentrated up to 5.0% following musculoskeletal surgery in the rat study population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app