Add like
Add dislike
Add to saved papers

Pharmacological Activation of Rev-erb α Attenuates Doxorubicin-Induced Cardiotoxicity by PGC-1 α Signaling Pathway.

BACKGROUND: Doxorubicin-induced cardiotoxicity has been closely concerned in clinical practice. Rev-erb α is a transcriptional repressor that emerges as a drug target for heart diseases recently. This study is aimed at investigating the role and mechanism of Rev-erb α in doxorubicin-induced cardiotoxicity.

METHODS: H9c2 cells were treated with 1.5  μ M doxorubicin, and C57BL/6 mice were treated with a 20 mg/kg cumulative dose of doxorubicin to construct doxorubicin-induced cardiotoxicity models in vitro and in vivo. Agonist SR9009 was used to activate Rev-erb α . PGC-1 α expression level was downregulated by specific siRNA in H9c2 cells. Cell apoptosis, cardiomyocyte morphology, mitochondrial function, oxidative stress, and signaling pathways were measured.

RESULTS: SR9009 alleviated doxorubicin-induced cell apoptosis, morphological disorder, mitochondrial dysfunction, and oxidative stress in H9c2 cells and C57BL/6 mice. Meanwhile, PGC-1 α and downstream signaling NRF1, TAFM, and UCP2 expression levels were preserved by SR9009 in doxorubicin-treated cardiomyocytes in vitro and in vivo. When downregulating PGC-1 α expression level by specific siRNA, the protective role of SR9009 in doxorubicin-treated cardiomyocytes was attenuated with increased cell apoptosis, mitochondrial dysfunction, and oxidative stress.

CONCLUSION: Pharmacological activation of Rev-erb α by SR9009 could attenuate doxorubicin-induced cardiotoxicity through preservation of mitochondrial function and alleviation of apoptosis and oxidative stress. The mechanism is associated with the activation of PGC-1 α signaling pathways, suggesting that PGC-1 α signaling is a mechanism for the protective effect of Rev-erb α against doxorubicin-induced cardiotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app