Add like
Add dislike
Add to saved papers

Proinflammatory S100A9 Stimulates TLR4/NF-κB Signaling Pathways Causing Enhanced Phagocytic Capacity of Microglial Cells.

Immunology Letters 2023 March 3
Alzheimer's disease (AD) is the main cause of dementia, affecting the increasingly aging population. Growing evidence indicates that neuro-inflammation plays crucial roles, e.g., the association between AD risk genes with innate immune functions. In this study, we demonstrate that moderate concentrations of pro-inflammatory cytokine S100A9 regulate immune response of BV2 microglial cells, i.e., the phagocytic capacity, reflected by elevated number of 1 μm diameter Dsred-stained latex beads in the cytoplasm. In contrast, at high S100A9 concentrations, both the viability and phagocytic capacity of BV2 cells drop substantially. Furthermore, it is uncovered that S100A9 affects phagocytosis of microglia via NF-κB signaling pathways. Application of related target-specific drugs, i.e., IKK and TLR4 inhibitors, effectively suppresses BV2 cells' immune responses. These results suggest that pro-inflammatory S100A9 activates microglial phagocytosis, and possibly contributes to the clearance of amyloidogenic species at the early stage of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app