Add like
Add dislike
Add to saved papers

β-Lactoglobulin affects the oxidative status and viability of equine endometrial progenitor cells via lncRNA-mRNA-miRNA regulatory associations.

The β-lactoglobulin (β-LG) was previously characterized as a mild antioxidant modulating cell viability. However, its biological action regarding endometrial stromal cell cytophysiology and function has never been considered. In this study, we investigated the influence of β-LG on the cellular status of equine endometrial progenitor cells under oxidative stress. The study showed that β-LG decreased the intracellular accumulation of reactive oxygen species, simultaneously ameliorating cell viability and exerting an anti-apoptotic effect. However, at the transcriptional level, the reduced mRNA expression of pro-apoptotic factors (i.e. BAX and BAD) was accompanied by decreased expression of mRNA for anti-apoptotic BCL-2 and genes coding antioxidant enzymes (CAT, SOD-1, GPx). Still, we have also noted the positive effect of β-LG on the expression profile of transcripts involved in endometrial viability and receptivity, including ITGB1, ENPP3, TUNAR and miR-19b-3p. Finally, the expression of master factors of endometrial decidualization, namely prolactin and IGFBP1, was increased in response to β-LG, while non-coding RNAs (ncRNAs), that is lncRNA MALAT1 and miR-200b-3p, were upregulated. Our findings indicate a novel potential role of β-LG as a molecule regulating endometrial tissue functionality, promoting viability and normalizing the oxidative status of endometrial progenitor cells. The possible mechanism of β-LG action includes the activation of ncRNAs essential for tissue regeneration, such as lncRNA MALAT-1/TUNAR and miR-19b-3p/miR-200b-3p.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app