Add like
Add dislike
Add to saved papers

Expression pattern of miR-193a, miR122, miR155, miR-15a, and miR146a in peripheral blood mononuclear cells of children with obesity and their relation to some metabolic and inflammatory biomarkers.

BMC Pediatrics 2023 March 2
BACKGROUND: The widespread presence of childhood obesity has increased considerably over three decades. The present study was designed to investigate expression patterns of miR-146a, miR-155, miR-15a, miR-193a, and miR-122 in peripheral blood mononuclear cells (PBMCs) in children who are obese along with their association with metabolic and inflammatory biomarkers.

METHODS: Ninety test subjects were admitted. The profile of blood pressure, resting energy expenditure (REE), anthropometric measures, body composition, dietary intakes, physical activity levels, insulin, and lipid profile, fasting blood glucose (FBG), high-sensitivity C-reactive protein (hs-CRP), and pubertal stage have been measured. Total RNA (including small RNAs) was extracted from PBMCs. The expression levels of miRNAs were measured by stem-loop RT-qPCR.

RESULTS: The miR-155a expression level was significantly lower in obese children, children with high hs-CRP, and children with high-fat mass. Obese girls had significantly higher PBMC levels of miR-122. MiR-155a had a significant negative association with fasting insulin, HOMA-IR, and hs-CRP. There were significant positive associations between miR-193a and miR-122 expression levels and fasting insulin, HOMA-IR, and TG. MiR-15a was positively correlated with fasting insulin and HOMA-IR. Children with metabolic syndrome, insulin resistance, and high-fat mass had higher PBMC levels of miR-122 and miR-193a. Higher miR-193a and miR-122 levels were also detected in PBMCs of children with fast REE, compared to those with slow REE, and the subjects with high hs-CRP, respectively.

CONCLUSION: lower level of miR-155 expression in obese subjects and significant associations unfolds the need for more studies to detect the possible underlying mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app