Add like
Add dislike
Add to saved papers

Hydroxysteroid 17β-dehydrogenase 11 Accumulation on Lipid Droplets Promotes Ethanol-Induced Cellular Steatosis.

Lipid Droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption would also slow the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins (poly UB), linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17β-dehydrogenase 11 (HSD17β11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17β11 localization to LDs. When we overexpressed HSD17β11 in EtOH-metabolizing VA-13 cells the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TG). Ethanol exposure augmented cellular TG, while HSD17β11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17β11 overexpression lowered the LD localization of adipose triglyceride lipase (ATGL). EtOH exposure further reduced this localization. Genetic reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17β11 and TG. Our findings indicate that EtOH exposure blocks HSD17β11 degradation by inhibiting the UPS, thereby stabilizing HSD17β11 on LD membranes, to prevent lipolysis by ATGL and promote cellular LD accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app