Add like
Add dislike
Add to saved papers

The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius-Achilles Tendon Unit.

Bioengineering 2023 Februrary 18
As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius-Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remains unclear. Therefore, this study aimed to explore the effects of two main foot strike patterns on the morphological and mechanical characteristics of the gMTU. Long-distance male runners with habitual forefoot (FFS group, n = 10) and rearfoot strike patterns (RFS group, n = 10) and male non-runners (NR group, n = 10) were recruited. A Terason uSmart 3300 ultrasonography system was used to image the medial gastrocnemius (MG) and Achilles tendon, Image J software to analyze the morphology, and a dynamometer to determine plantar flexion torque during maximal voluntary isometric contractions. The participants first performed a 5-minute warm up; then, the morphological measurements of MG and AT were recorded in a static condition; finally, the MVICs test was conducted to investigate the mechanical function of the gMTU. One-way ANOVA and nonparametric tests were used for data analysis. The significance level was set at a p value of <0.05. The muscle fascicle length (FL) (FFS: 67.3 ± 12.7, RFS: 62.5 ± 7.6, NRs: 55.9 ± 2.0, η2 = 0.187), normalized FL (FFS: 0.36 ± 0.48, RFS: 0.18 ± 0.03, NRs: 0.16 ± 0.01, η2 = 0.237), and pennation angle (PA) (FFS: 16.2 ± 1.9, RFS: 18.9 ± 2.8, NRs: 19.3 ± 2.4, η2 = 0.280) significantly differed between the groups. Specifically, the FL and normalized FL were longer in the FFS group than in the NR group ( p < 0.05), while the PA was smaller in the FFS group than in the NR group ( p < 0.05). Conclusion: Long-term running with a forefoot strike pattern could significantly affect the FL and PA of the MG. A forefoot strike pattern could lead to a longer FL and a smaller PA, indicating an FFS pattern could protect the MG from strain under repetitive high loads.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app