Add like
Add dislike
Add to saved papers

Heparin and heparin proteoglycan-mimetics activate platelets via PEAR1 and PI3Kβ.

BACKGROUND: Platelet endothelial aggregation receptor 1 (PEAR1) is a single-transmembrane orphan receptor primarily expressed on platelets and endothelial cells. Genetic variants of PEAR1 have repeatedly and independently been identified to be associated with cardiovascular diseases, including coronary artery disease.

OBJECTIVES: We have identified sulfated fucoidans and their mimetics as ligands for PEAR1 and proposed that its endogenous ligand is a sulfated proteoglycan. The aim of this study was to test this hypothesis.

METHODS: A heparin proteoglycan-mimetic (HPGM) was created by linking unfractionated heparin (UFH) to albumin. The ability of the HPGM, UFH and selectively desulfated heparins to stimulate platelet aggregation and protein phosphorylation was investigated. Nanobodies against the 12th to 13th epidermal growth factor-like repeat of PEAR1 and phosphoinositide 3-kinase (PI3K) isoform-selective inhibitors were tested for the inhibition of platelet activation.

RESULTS: We show that HPGM, heparin conjugated to an albumin protein core, stimulates aggregation and phosphorylation of PEAR1 in washed platelets. Platelet aggregation was abolished by an anti-PEAR1 nanobody, Nb138. UFH stimulated platelet aggregation in washed platelets, but desulfated UFH did not. Furthermore, HPGM, but not UFH, stimulated maximal aggregation in platelet-rich plasma. However, both HPGM and UFH increased integrin αIIbβ3 activation in whole blood. By using PI3K isoform-selective inhibitors, we show that PEAR1 activates PI3Kβ, leading to Akt phosphorylation.

CONCLUSION: Our findings reveal that PEAR1 is a receptor for heparin and HPGM and that PI3Kβ is a key signaling molecule downstream of PEAR1 in platelets. These findings may have important implications for our understanding of the role of PEAR1 in cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app