Add like
Add dislike
Add to saved papers

Statistical and machine learning approaches to predict the necessity for computed tomography in children with mild traumatic brain injury.

BACKGROUND: Minor head trauma in children is a common reason for emergency department visits, but the risk of traumatic brain injury (TBI) in those children is very low. Therefore, physicians should consider the indication for computed tomography (CT) to avoid unnecessary radiation exposure to children. The purpose of this study was to statistically assess the differences between control and mild TBI (mTBI). In addition, we also investigate the feasibility of machine learning (ML) to predict the necessity of CT scans in children with mTBI.

METHODS AND FINDINGS: The study enrolled 1100 children under the age of 2 years to assess pre-verbal children. Other inclusion and exclusion criteria were per the PECARN study. Data such as demographics, injury details, medical history, and neurological assessment were used for statistical evaluation and creation of the ML algorithm. The number of children with clinically important TBI (ciTBI), mTBI on CT, and controls was 28, 30, and 1042, respectively. Statistical significance between the control group and clinically significant TBI requiring hospitalization (csTBI: ciTBI+mTBI on CT) was demonstrated for all nonparametric predictors except severity of the injury mechanism. The comparison between the three groups also showed significance for all predictors (p<0.05). This study showed that supervised ML for predicting the need for CT scan can be generated with 95% accuracy. It also revealed the significance of each predictor in the decision tree, especially the "days of life."

CONCLUSIONS: These results confirm the role and importance of each of the predictors mentioned in the PECARN study and show that ML could discriminate between children with csTBI and the control group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app