Add like
Add dislike
Add to saved papers

Spectroscopic and crystallographic analysis of nephrite jade gemstone using laser induced breakdown spectroscopy, Raman spectroscopy, and X-ray diffraction.

Heliyon 2022 November
The elemental composition, mineral phases, and crystalline structure of nephrite jade were investigated using calibration-free laser-induced breakdown spectroscopy (CF-LIBS), Raman spectroscopy, and X-ray diffraction (XRD). For compositional analysis, the laser-induced plasma was generated on the surface of nephrite jade. The plasma emissions were then acquired and analyzed, which revealed several elements in the sample, including Si, Mg, Ca, Li, Fe, Al, Na, K, and Ni. The plasma temperature was extracted from the Boltzmann plot before and after two-step self-absorption correction, and used in CF-LIBS calculations to get the elemental concentration. After self-absorption correction, the quantitative results obtained using CF-LIBS were found to be in close agreement with ICP-OES. The Raman spectrum of nephrite jade exhibits Si-O and M-OH stretching vibrations in the regions of 100 cm-1 to 1200 cm-1 and 3600 cm-1 to 3700 cm-1 , respectively, whereas the XRD spectrum revealed the monoclinic crystalline phase of tremolite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app