Add like
Add dislike
Add to saved papers

A synthetic pregnenolone analog promotes microtubule dynamics and neural development.

Cell & Bioscience 2022 December 2
BACKGROUND: Pregnenolone (P5) is a neurosteroid that promotes microtubule polymerization. It also reduces stress and negative symptoms of schizophrenia, promotes memory, as well as recovery from spinal cord injury. P5 is the first substance in the steroid-synthetic pathway; it can be further metabolized into other steroids. Therefore, it is difficult to differentiate the roles of P5 versus its metabolites in the brain. To alleviate this problem, we synthesized and screened a series of non-metabolizable P5 derivatives for their ability to polymerize microtubules similar to P5.

RESULTS: We identified compound #43 (3-beta-pregnenolone acetate), which increased microtubule polymerization. We showed that compound #43 modified microtubule dynamics in live cells, increased neurite outgrowth and changed growth cone morphology in mouse cerebellar granule neuronal culture. Furthermore, compound #43 promoted the formation of stable microtubule tracks in zebrafish developing cerebellar axons.

CONCLUSIONS: We have developed compound #43, a nonmetabolized P5 analog, that recapitulates P5 functions in vivo and can be a new therapeutic candidate for the treatment of neurodevelopmental diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app