Add like
Add dislike
Add to saved papers

7,8-Dihydroxyflavone alleviates cardiac fibrosis by restoring circadian signals via downregulating Bmal1/Akt pathway.

Brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) pathway is a therapeutic target in cardiac diseases. A BDNF mimetic, 7,8-dihydroxyflavone (7,8-DHF), is emerging as a protective agent in cardiomyocytes; however, its potential role in cardiac fibroblasts (CFs) and fibrosis remains unknown. Thus, we aimed to explore the effects of 7,8-DHF on cardiac fibrosis and the possible mechanisms. Myocardial ischemia (MI) and transforming growth factor-β1 (TGF-β1) were used to establish models of cardiac fibrosis. Hematoxylin & eosin and Masson's trichrome stains were used for histological analysis and determination of collagen content in mouse myocardium. Cell viability kit, EdU (5-ethynyl-2'-deoxyuridine) assay and immunofluorescent stain were employed to examine the effects of 7,8-DHF on the proliferation and collagen production of CFs. The levels of collagen I, α-smooth muscle actin (α-SMA), TGF-β1, Smad2/3, and Akt as well as circadian rhythm-related signals including brain and muscle Arnt-like protein 1 (Bmal1), period 2 (Per2), and cryptochrome 2 (Cry2) were analyzed. Treatment with 7,8-DHF markedly alleviated cardiac fibrosis in MI mice. It inhibited the activity of CFs accompanied by decreasing number of EdU-positive cells and downregulation of collagen I, α-SMA, TGF-β1, and phosphorylation of Smad2/3. 7,8-DHF significantly restored the dysregulation of Bmal1, Per2, and Cry2, but inhibited the overactive Akt. Further, inhibition of Bmal1 by SR9009 effectively attenuated CFs proliferation and collagen production of CFs. In summary, these findings indicate that 7,8-DHF attenuates cardiac fibrosis and regulates circadian rhythmic signals, at least partly, by inhibiting Bmal1/Akt pathway, which may provide new insights into therapeutic cardiac remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app