Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GluN1 antibody causes behavioral deficits in prepulse inhibition and memory through CaMKIIβ signaling.

Accumulating evidence suggests that some patients with schizophrenia have high production of autoantibodies against the N-methyl-d-aspartate receptor (NMDAR) subunit GluN1 and that these antibodies lead to cognitive impairment. However, the molecular mechanisms of the deficits seen in these patients are largely unknown. In the present study, we found that passive infusion of GluN1 antibody into the hippocampus of mice for 7 days led to decreased expression of GluN1, phosphor-Ser897-GluN1, and EphrinB2 receptor (EphB2R); deficits in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; impairment in prepulse inhibition (PPI); and deterioration of recognition memory in novel object recognition test. We also found decreased expression of CaMKIIβ, ERK1/2, CREB, and NF-κB after 7 days of GluN1 antibody exposure, as was the phosphorylation of these signaling molecules. The decrease in GluN1 and phosphor-Ser897-GluN1 expression and the deficits in LTP, PPI, and recognition memory were ameliorated by CaMKIIβ overexpression. These results suggest that downregulation of CaMKIIβ-ERK1/2-CREB-NF-κB signaling is responsiable for GluN1 antibody-associated impairment in PPI and memory and that GluN1 antibody-induced NMDAR hypofunction is the underlying mechanism of this impairment. Our findings indicate possible strategies to ameliorate NMDAR antibody-associated cognitive impairment in neuropsychiatric disease. They also provide evidence that NMDAR hypofunction is an underlying mechanism for cognitive impairment in schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app