Add like
Add dislike
Add to saved papers

High contamination of a sentinel vertebrate species by azoles in vineyards: a study of common blackbirds (Turdus merula) in multiple habitats in western France.

Environmental Pollution 2022 November 19
Azoles represent the most used family of organic fungicides worldwide and they are used in agriculture to circumvent the detrimental impact of fungi on yields. Although it is known that these triazoles can contaminate the air, the soil, and the water, field data are currently and dramatically lacking to assess if, and to what extent, the use of triazoles could contaminate non-target wild vertebrate species, notably in agroecosystems. In this study, we aimed to document for the first time the degree of blood contamination of a generalist wild bird species by multiple azoles which are used for plant protection and fungi pest control in various habitats. We deployed passive air samplers and captured 118 Common blackbirds (Turdus merula) in an agroecosystem (vineyard), a protected forest, and a city in western France. We collected blood and analyzed the plasma levels of 13 triazoles and 2 imidazoles. We found that a significant percentage of blackbirds living in vineyards have extremely high plasma levels of multiple azoles (means (pg.g-1 ); tebuconazole: 149.23, difenoconazole: 44.27, fenbuconazole: 239.38, tetraconazole: 1194.16), while contamination was very limited in the blackbirds from the protected forest and absent in urban blackbirds. Interestingly, we also report that the contamination of blackbirds living in vineyard was especially high at the end of Spring and the beginning of Summer and this matches perfectly with the results from the passive air samplers (i.e., high levels of azoles in the air of vineyards during June and July). However, we did not find any correlation between the levels of plasma contamination by azoles and two simple integrative biomarkers of health (feather density and body condition) in this sentinel species. Future experimental studies are now needed to assess the potential sub-lethal effects of such levels of contamination on the physiology of non-target vertebrate species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app