Add like
Add dislike
Add to saved papers

Neuroimaging uncovers neuronal and metabolic changes in pain modulatory brain areas in a rat model of chemotherapy-induced neuropathy - MEMRI and ex vivo spectroscopy studies.

Brain Research Bulletin 2022 October 32
Chemotherapy-induced neuropathy (CIN) is one of the most common complications of cancer treatment with sensory dysfunctions which frequently include pain. The mechanisms underlying pain during CIN are starting to be uncovered. Neuroimaging allows the identification of brain circuitry involved in pain processing and modulation and has recently been used to unravel the disruptions of that circuitry by neuropathic pain. The present study evaluates the effects of paclitaxel, a cytostatic drug frequently used in cancer treatment, at the neuronal function in the anterior cingulate cortex (ACC), hypothalamus and periaqueductal grey (PAG) using manganese-enhanced magnetic resonance imaging (MEMRI). We also studied the metabolic profile at the prefrontal cortex (PFC) and hypothalamus using ex vivo spectroscopy. Wistar male rats were intraperitoneal injected with paclitaxel or vehicle solution (DMSO). The evaluation of mechanical sensitivity using von Frey test at baseline (BL), 21 (T21), 28 (T28), 49 (T49) and 56 days (T56) after CIN induction showed that paclitaxel-injected rats presented mechanical hypersensitivity from T21 until T56 after CIN induction. The evaluation of the locomotor activity and exploratory behaviors using open-field test at T28 and T56 after the first injection of paclitaxel revealed that paclitaxel-injected rats walked higher distance with higher velocity at late point of CIN accompanied with a sustained exhibition of anxiety-like behaviors. Imaging studies performed using MEMRI at T28 and T56 showed that paclitaxel treatment increased the neuronal activation in the hypothalamus and PAG at T56 in comparison with the control group. The analysis of data from ex vivo spectroscopy demonstrated that at T28 paclitaxel-injected rats presented an increase of N-acetyl aspartate (NAA) levels in the PFC and an increase of NAA and decrease of lactate (Lac) concentration in the hypothalamus compared to the control group. Furthermore, at T56 the paclitaxel-injected rats presented lower NAA and higher taurine (Tau) levels in the PFC. Together, MEMRI and metabolomic data indicate that CIN is associated with neuroplastic changes in brain areas involved in pain modulation and suggests that other events involving glial cells may be happening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app