Add like
Add dislike
Add to saved papers

Widespread bacterial responses and their mechanism of bacterial metallogenic detoxification under high concentrations of heavy metals.

Microbial mineralization is increasingly used in bioremediation of heavy metal pollution, but better mechanistic understanding of the processes involved and how they are regulated are required to improve the practical application of microorganisms in bioremediation. We used a combination of morphological (TEM) and analytical (XRD, XPS, FTIR) methods, together with novel proteomic analyses, to investigate the detoxification mechanisms, used by a range of bacteria, including the strains Bacillus velezensis LB002, Escherichia coli DH5α, B. subtilis 168, Pseudomonas putida KT2440, and B. licheniformis MT-1, exposed to elevated concentrations of Cd2+ and combinations of Cd2+ , Pb2+ , Cu2+ , and Zn2+ , in the presence and absence of added CaCl2 . Common features of detoxification included biomineralization, including the production of biological vaterite, up-regulation of proteins involved in flagellar movement and chemotaxis, biofilm synthesis, transmembrane transport of small molecules and organic matter decomposition. The putative roles of differentially expressed proteins in detoxification are discussed in relation to chemical and morphological data and together provide important tools to improve screening, selection, and practical application of bacterial isolates in bioremediation of polluted environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app