Add like
Add dislike
Add to saved papers

Optimal cut-off value for endocardial bipolar voltage mapping using a multipoint mapping catheter to characterize the scar regions described in cardio-CT with myocardial thinning.

INTRODUCTION: To investigate whether the current standard voltage cut-off of <0.5 for dense scar definition on endocardial bipolar voltage mapping (EBVM), using a high-resolution multipoint mapping catheter with microelectrodes (HRMMC), correctly identifies the actual scar area described on CT with myocardial thinning (CT MT).

METHODS: Forty patients (39 men; 67.0 ± 9.0 y/o) with a history of transmural myocardial infarction (mean time interval since MI 15.0 ± 7.9 years) and sustained ventricular tachycardia (VT) were consecutively enrolled. A CT MT was performed in each patient before VT ablation. The CT MT 3D anatomical model, including MT layers, was merged with the 3D electroanatomical and EBVM. Different predefined cut-off settings for scar definition on EBVM were used to identify the optimal ones, which showed the best overlap in terms of scar area with the different MT layers.

RESULTS: A cut-off value of <0.2 mV demonstrated the best correlation in terms of scar area with the 2 mm thinning on CT MT (p = .04) and a cut-off of <1 mV best overlapped with the 5 mm thinning (p = .003). The currently used <0.5 mV cut-off for scar definition on EBVM proved to be the best area correlation with 3 mm thinning (p = .0002).

CONCLUSION: In order to better identify the real extent of scar areas after transmural MI as described on preprocedural CT MT, higher cut-off values for scar definition should be applied if the EBVM is performed using a HRMMC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app