Add like
Add dislike
Add to saved papers

Direction decoding of imagined hand movements using subject-specific features from parietal EEG.

Objective. Research on the decoding of brain signals to control external devices is rapidly emerging due to its versatile potential applications, including neuroprosthetic control and neurorehabilitation. Electroencephalogram (EEG)-based non-invasive brain-computer interface (BCI) systems decode brain signals to establish an augmented communication and control pathway between the brain and the computer. The development of an efficient BCI system requires accurate decoding of neural activity underlying the user's intentions. This study investigates the directional tuning of EEG characteristics from the posterior parietal region, associated with bidirectional hand movement imagination or motor imagery (MI) in left and right directions. Approach . The imagined movement directions of the chosen hand were decoded using a combination of envelope and phase features derived from parietal EEGs of both hemispheres. The proposed algorithm uses wavelets for spectral decomposition, and discriminative subject-specific subband levels are identified based on Fisher analysis of envelope and phase features. The selected features from the discriminative subband levels are used to classify left and right MI directions of the hand using a support vector machine classifier. Furthermore, the performance of the proposed algorithm is evaluated by incorporating a maximum-variance-based EEG time bin selection algorithm. Main results. With the time bin selection approach using subject-specific features, the proposed algorithm yielded an average left vs right MI direction decoding accuracy of 73.33% across 15 healthy subjects. In addition, the decoding accuracy offered by the phase features was higher than that of the envelope features, indicating the importance of phase features in MI kinematics decoding. Significance. The results reveal the significance of the parietal EEG in decoding of imagined kinematics and open new possibilities for future BCI research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app