Add like
Add dislike
Add to saved papers

Solid surface frustrated Lewis pair constructed on layered AlOOH for hydrogenation reaction.

Nature Communications 2022 April 29
Designing heterogeneous solid surface frustrated Lewis pair (ssFLP) catalyst for hydrogenation is a new challenge in catalysis and no research has been reported on the construction of ssFLP on boehmite (AlOOH) surfaces up to now as far as we know. Herein, AlOOH with a layer structure is prepared and it is found that the Lewis basic OHv site (one H removed from OH) and an adjacent Lewis acidic unsaturated Al site (Al3+ unsatur .) proximal to a surface OHv (OH vacancy) on AlOOH layers could form the ssFLP. The layered structure of AlOOH and its abundant OH defects over the surface result in a high concentration of OHv /Al3+ unsatur . FLPs, which are conducive to highly efficient hydrogen activation for hydrogenation of olefins and alkynes with low H-H bond dissociates activation energy of 0.16 eV under mild conditions (T = 80°C and P(H2 ) = 2.0 MPa). This work develops a new kind of hydrogenation catalyst and provides a new perspective for creating solid surface FLP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app