Add like
Add dislike
Add to saved papers

Defective monocyte enzymatic function and an inhibitory immune phenotype in HIV-exposed uninfected African infants in the era of antiretroviral therapy.

BACKGROUND: HIV-Exposed Uninfected (HEU) infants are a rapidly expanding population in sub-Saharan Africa, highly susceptible to encapsulated bacterial disease in the first year of life. The mechanism of this increased risk is still poorly understood. We investigated if HIV-exposure dysregulates HEU immunity, vaccine-antibody production and human herpes virus (HHV) amplify this effect.

METHODS: 34 HIV-infected and 44 HIV-uninfected pregnant women were recruited into the birth cohort, followed up to 6 weeks of age; and 43 HIV-infected and 61 HIV-uninfected mother-infant pairs into a longitudinal infant cohort, at either: 5-7 to 14-15; or 14-15 to 18-23 weeks of age. We compared monocyte function, innate and adaptive immune cell phenotype, and vaccine-induced antibody responses between HEU and HU infants.

RESULTS: We demonstrate altered monocyte phagosomal function and B cell subset homeostasis, and lower vaccine-induced anti-Haemophilus influenzae type b (Hib) and anti-Tetanus Toxoid (TT) IgG titers in HEU compared to HU infants. HHV infection was similar between HEU and HU infants.

CONCLUSION: In the era of antiretroviral therapy (ART)-mediated viral suppression, HIV-exposure may dysregulate monocyte and B cell function, during the vulnerable period of immune maturation. This may contribute to the high rates of invasive bacterial disease and pneumonia in HEU infants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app