Add like
Add dislike
Add to saved papers

Time-dependent effects on circulating cytokines in patients with LADA: A decrease in IL1-ra and IL-1 beta is associated with progressive disease.

Cytokine 2022 January 21
BACKGROUND: Cytokines and chemokines participate in autoimmune processes at cellular targets which include insulin-producing beta cells. To which extent such participation is reflected in the circulation has not been conclusively resolved.

AIM: We compared the time course of cytokines/chemokines in Latent Autoimmune Diabetes in Adults (LADA) patients heterogeneous for high or low autoimmune activity as determined by levels of antibodies against glutamic acid decarboxylase (GADA).

METHODS: Serum samples to be measured were from a two-armed randomized controlled trial (RCT) in 68 LADA patients. The study encompassed 21 months with C-peptide as primary endpoint. We measured 27 immune mediators at baseline, at 9 and at 21 months (end of study). Results of measurements were analyzed by multiple linear regression.

RESULTS: At baseline, a high body mass index (BMI) (>26 kg/m2 ) was associated with elevated levels of the interleukins (IL) IL-1 beta, IL-1ra, IL-2, IL-5, IL-6 and IL-13. Treatment during RCT (sitagliptin vs. insulin) did not affect the time course (21 months) of levels of cytokines/chemokines (by univariate analyses). However, levels of the cytokines IL-1ra and IL-1 beta decreased significantly (p < 0.04 or less) in patients with high vs. low GADA when adjusted for BMI, age, gender (male/female), treatment (insulin/sitagliptin) and study site (Norwegian/Swedish).

CONCLUSIONS: In LADA, high levels of GADA, a proxy for high autoimmune activity and linked to a decline in C-peptide, was associated with a decrease of selected cytokines over time. This implies that the decline of IL-1ra and IL-1 beta in the circulation reflects autoimmune activity and beta cell demise in LADA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app