Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transgenic genome editing-derived antiviral therapy to nucleopolyhedrovirus infection in the industrial strain of the silkworm.

The silkworm (Bombyx mori) is a domesticated and economically important insect. During the whole growth period, silkworm suffers various pathogen infection. Nearly 80% of silk cocoon crop losses are attributed to viral diseases. The circular double-stranded DNA virus Bombyx mori nuclepolyhedrovirus (BmNPV) is the major viral pathogen responsible for massive silkworm death and huge economic losses in the sericulture industry. Up to now, almost all the new strategies for developing immunity against BmNPV are in laboratory strains because of the lack of transgenic technology in industrial silkworm strains. We previously demonstrated that modification of BmNPV genome DNA with the antivirus transgenic CRISPR/Cas9 system effectively improved the resistance of laboratory silkworm strains to viral pathogens. The industrial strains are monovoltine or bivoltine. It is very difficult to break the diapause before microinjection for genetic transformation. Here, we show that the anti-BmNPV transgenic CRISPR/Cas9 system also works in the industrial silkworm strain Jingsong. In this study, we successfully broke diapause and obtained generation-skipping embryos and constructed two TG Jingsong lines. Both lines exhibited significantly enhanced immunity to BmNPV without significant changes in most of the commercially important traits. These results demonstrate that the construction of TG silkworm lines carrying a heritable immune defense system against BmNPV could be an effective strategy to enhance the resistance of industrial silkworm strains to the most devastating DNA virus. The research opened a window for genetic modification of the important strains from laboratory strains to industrial strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app