Read by QxMD icon Read

Insect Biochemistry and Molecular Biology

Silas A Rasmussen, Kenneth T Kongstad, Paiman Khorsand-Jamal, Rubini Maya Kannangara, Majse Nafisi, Alex Van Dam, Mads Bennedsen, Bjørn Madsen, Finn Okkels, Charlotte H Gotfredsen, Dan Staerk, Ulf Thrane, Uffe H Mortensen, Thomas O Larsen, Rasmus J N Frandsen
The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-β-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA)...
March 15, 2018: Insect Biochemistry and Molecular Biology
José M C Ribeiro, Ines Martin-Martin, Fernando R Moreira, Kristen A Bernard, Eric Calvo
Previously, a Sanger-based sialotranscriptome analysis of adult female Culex tarsalis was published based on ∼2000 ESTs. During the elapsed 7.5 years, pyrosequencing has been discontinued and Illumina sequences have increased considerable in size and decreased in price. We here report an Illumina-based sialotranscriptome that allowed finding the missing apyrase from the salivary transcriptome of C. tarsalis, to determine several full-length members of the 34-62 kDa family, when a single EST has been found previously, in addition to identifying many salivary families with lower expression levels that were not detected previously...
March 8, 2018: Insect Biochemistry and Molecular Biology
Seung Ho Chung, Xiangfeng Jing, Yuan Luo, Angela E Douglas
The growth and reproduction of phloem sap-feeding insects requires the sustained function of intracellular bacteria localized in specialized cells known as bacteriocytes, giving the potential to target the bacterial symbiosis as a novel strategy for controlling sap-feeding insect pests. We focused on two genes in the pea aphid Acyrthosiphon pisum, amiD and ldcA1, which were acquired horizontally from bacteria and have the annotated function to degrade immunogenic bacterial peptidoglycan. We hypothesized that AmiD and LdcA1 function to eliminate peptidoglycan fragments released by the bacterial symbiont Buchnera inhabiting the bacteriocytes, thereby protecting the Buchnera from host attack...
March 8, 2018: Insect Biochemistry and Molecular Biology
Dujuan Dong, Yang Zhang, Vlastimil Smykal, Lin Ling, Alexander S Raikhel
The Aedes aegypti mosquito is the principal vector for many dangerous human viral diseases. Carbohydrate metabolism (CM) is essential for supplying the energy necessary for host seeking, blood digestion and rapid egg development of this vector insect. The steroid hormone 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) are important regulators of CM, coordinating it with female reproductive events. We report here that the NR4A nuclear receptor AHR38 plays a critical role in mediating these actions of 20E and EcR...
March 8, 2018: Insect Biochemistry and Molecular Biology
Marcela Nouzova, Veronika Michalkova, Salvador Hernández-Martínez, Crisalejandra Rivera-Perez, Cesar E Ramirez, Francisco Fernandez-Lima, Fernando G Noriega
Juvenile hormone (JH) is a major hormonal regulator in insects. In Aedes aegypti females, JH signals the completion of the ecdysis to the adult stage and initiates reproductive processes. Although the regulation of JH synthesis and titer in Ae. aegypti females has been extensively studied, relatively little is known about changes of JH synthesis and titers in male mosquitoes, as well as on the roles of JH controlling male reproductive biology. A better understanding of male mosquito reproductive biology, including an improved knowledge of the hormonal control of reproduction, could increase the likelihood of success of male-targeting vector control programs...
March 8, 2018: Insect Biochemistry and Molecular Biology
Jan Perner, Jan Kotál, Tereza Hatalová, Veronika Urbanová, Pavla Bartošová-Sojková, Peter M Brophy, Petr Kopáček
Blood-feeding parasites are inadvertently exposed to high doses of potentially cytotoxic haem liberated upon host blood digestion. Detoxification of free haem is a special challenge for ticks, which digest haemoglobin intracellularly. Ticks lack a haem catabolic mechanism, mediated by haem oxygenase, and need to dispose of vast majority of acquired haem via its accumulation in haemosomes. The knowledge of individual molecules involved in the maintenance of haem homeostasis in ticks is still rather limited. RNA-seq analyses of the Ixodes ricinus midguts from blood- and serum-fed females identified an abundant transcript of glutathione S-transferase (gst) to be substantially up-regulated in the presence of red blood cells in the diet...
March 8, 2018: Insect Biochemistry and Molecular Biology
Nidhi S Saikhedkar, Rakesh S Joshi, Ashiwini S Bhoite, Radhika Mohandasan, Amit Kumar Yadav, Moneesha Fernandes, Kiran A Kulkarni, Ashok P Giri
Potato type II protease inhibitors (Pin-II PIs) impede the growth of lepidopteran insects by inhibiting serine protease-like enzymes in the larval gut. The three amino acid reactive centre loop (RCL) of these proteinaceous inhibitors is crucial for protease binding and is conserved across the Pin-II family. However, the molecular mechanism and inhibitory potential of the RCL tripeptides in isolation of the native protein has remained elusive. In this study, six peptides corresponding to the RCLs of the predominant Pin-II PIs were identified, synthesized and evaluated for in vitro and in vivo inhibitory activity against serine proteases of the polyphagous insect, Helicoverpa armigera...
February 24, 2018: Insect Biochemistry and Molecular Biology
Haruka Endo, Satomi Adegawa, Shingo Kikuta, Ryoichi Sato
The cadherin-like protein in lepidopteran insects, known as a receptor for Bacillus thuringiensis Cry1A toxins, is a single-pass membrane protein that can be divided into extracellular and intracellular regions. The extracellular region is important for toxin binding and oligomerization, whereas the role of the intracellular region during Cry1A intoxication is unclear. In the present study, we generated a deletion mutant of Bombyx mori cadherin-like protein (BtR175) that lacked the intracellular region to investigate its role in mediating Cry1A toxicity...
February 6, 2018: Insect Biochemistry and Molecular Biology
Ling Wang, Yuemin Ma, Peng Wan, Kaiyu Liu, Yutao Xiao, Jintao Wang, Shengbo Cong, Dong Xu, Kongming Wu, Jeffrey A Fabrick, Xianchun Li, Bruce E Tabashnik
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. In some previously studied strains of three major lepidopteran pests, resistance to Bt toxin Cry1Ac is associated with mutations disrupting the extracellular or cytoplasmic domains of cadherin proteins that bind Cry1Ac in the midgut of susceptible larvae. Here we report the first case of a cadherin transmembrane mutation associated with insect resistance to Bt...
February 2, 2018: Insect Biochemistry and Molecular Biology
Misato Okamoto Miyakawa, Koji Tsuchida, Hitoshi Miyakawa
A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males...
February 2, 2018: Insect Biochemistry and Molecular Biology
Xi'en Chen, Yanghui Cao, Shuai Zhan, Yong Zhang, Anjiang Tan, Yongping Huang
The yellow gene family has been identified in several model insects, but yellow genes were poorly identified in non-model insects and the functions of yellow genes are largely unknown. In this study, we identified seven yellow genes in an important agricultural pest Agrotis ipsilon. Each gene encodes a protein containing a major royal jelly domain. Phylogenetic analysis defined these genes as yellow-y, -b, -b2, -c, -d, -e, and -h, respectively. The A. ipsilon yellow genes yellow-b, -b2, and -c were stably expressed in all developmental stages and tissues analyzed, whereas the other four yellow genes had unique expression patterns, suggesting distinct physiological roles of each gene...
January 11, 2018: Insect Biochemistry and Molecular Biology
Roman Rakitov, Alexander A Moysa, Arthur T Kopylov, Sergei A Moshkovskii, Ralph S Peters, Karen Meusemann, Bernhard Misof, Christopher H Dietrich, Kevin P Johnson, Lars Podsiadlowski, Kimberly K O Walden
Brochosomes (BS) are secretory granules resembling buckyballs, produced intracellularly in specialized glandular segments of the Malpighian tubules and forming superhydrophobic coatings on the integuments of leafhoppers (Hemiptera, Cicadellidae). Their composition is poorly known. Using a combination of SDS-PAGE, LC-MS/MS, next-generation sequencing (RNAseq) and bioinformatics we demonstrate that the major structural component of BS of the leafhopper Graphocephala fennahi Young is a novel family of 21-40-kDa secretory proteins, referred to herein as brochosomins (BSM), apparently cross-linked by disulfide bonds...
January 10, 2018: Insect Biochemistry and Molecular Biology
Cheng-Wang Sheng, Zhong-Qiang Jia, Yoshihisa Ozoe, Qiu-Tang Huang, Zhao-Jun Han, Chun-Qing Zhao
Insect γ-aminobutyric acid (GABA) receptor (GABAR) is one of the major targets of insecticides. In the present study, cDNAs (CsRDL1A and CsRDL2S) encoding the two isoforms of RDL subunits were cloned from the rice stem borer Chilo suppressalis. Transcripts of both genes demonstrated similar expression patterns in different tissues and developmental stages, although CsRDL2S was ∼2-fold more abundant than CsRDL1A throughout all development stages. To investigate the function of channels formed by CsRDL subunits, both genes were expressed in Xenopus laevis oocytes singly or in combination in different ratios...
March 2018: Insect Biochemistry and Molecular Biology
Zulian Liu, Lin Ling, Jun Xu, Baosheng Zeng, Yongping Huang, Peng Shang, Anjiang Tan
MicroRNAs (miRNA) regulate multiple physiological processes including development and metamorphosis in insects. In the current study, we demonstrate that a conserved invertebrate miRNA-14 (miR-14) plays an important role in ecdysteroid regulated development in the silkworm Bombyx mori, a lepidopteran model insect. Ubiquitous transgenic overexpression of miR-14 using the GAL4/UAS system resulted in delayed silkworm larval development and smaller body size of larva and pupa with decrease in ecdysteriod titers...
February 2018: Insect Biochemistry and Molecular Biology
Mario Soberón, Leivi Portugal, Blanca-Ines Garcia-Gómez, Jorge Sánchez, Janette Onofre, Isabel Gómez, Sabino Pacheco, Alejandra Bravo
Cell lines have been use extensively for the study of the mode of action of different pore forming toxins produced by different bacterial species. Bacillus thuringiensis Cry toxins are not the exception and their mechanism of action has been analyzed in different cell lines. Here we review the data obtained with different cell lines, including those that are naturally susceptible to the three domain Cry toxins (3d-Cry) and other non-susceptible cell lines that have been transformed with 3d-Cry toxin binding molecules cloned from the susceptible insects...
February 2018: Insect Biochemistry and Molecular Biology
Mahima Sharma, Gagan D Gupta, Vinay Kumar
The activated binary toxin (BinAB) from Lysinibacillus sphaericus binds to surface receptor protein (Cqm1) on the midgut cell membrane and kills Culex quinquefasciatus larvae on internalization. Cqm1 is attached to cells via a glycosyl-phosphatidylinositol (GPI) anchor. It has been classified as a member of glycoside hydrolase family 13 of the CAZy database. Here, we report characterization of the ordered domain (residues 23-560) of Cqm1. Gene expressing Cqm1 of BinAB susceptible mosquito was chemically synthesized and the protein was purified using E...
February 2018: Insect Biochemistry and Molecular Biology
Jennina Taylor-Wells, Anish Senan, Isabel Bermudez, Andrew K Jones
The insect GABA receptor, RDL, is the target of several classes of pesticides. The peptide sequences of RDL are generally highly conserved between diverse insects. However, RNA A-to-I editing can effectively alter amino acid residues of RDL in a species specific manner, which can affect the potency of GABA and possibly insecticides. We report here that RNA A-to-I editing alters the gene products of Rdl in three mosquito disease vectors, recoding five amino acid residues in RDL of Aedes aegypti and six residues in RDLs of Anopheles gambiae and Culex pipiens, which is the highest extent of editing in RDL observed to date...
February 2018: Insect Biochemistry and Molecular Biology
Lianyun Lin, Chen Liu, Juan Qin, Jie Wang, Shengjie Dong, Wei Chen, Weiyi He, Qingzhi Gao, Minsheng You, Zhiguang Yuchi
Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2...
January 2018: Insect Biochemistry and Molecular Biology
Haokun Zhang, Takashi Kiuchi, Chikara Hirayama, Susumu Katsuma, Toru Shimada
The Drosophila eye color gene brown is known to control the transport of pteridine precursors in adult eyes. The Brown protein belongs to the ATP-binding cassette (ABC) transporter G family, which includes proteins encoded by the genes brown, scarlet, and white. These genes are responsible for pigmentation in Drosophila and the domestic silkworm Bombyx mori. Although orthologs of brown are conserved among insects, the function of this gene is only known in Drosophila. Here, we elucidated the function of the B...
January 2018: Insect Biochemistry and Molecular Biology
Marie-Ève Picard, Audrey Nisole, Catherine Béliveau, Stephanie Sen, Aline Barbar, Rong Shi, Michel Cusson
Farnesyl diphosphate synthase (FPPS) is an enzyme from the class of short chain (E)-prenyltransferases that catalyzes the condensation of two molecules of isopentenyl diphosphate (IPP, C5 ) with dimethylallyl diphosphate (DMAPP, C5 ) to generate the C15 product FPP. In insects, FPPS plays a key role in the biosynthesis of the morphogenetic and gonadotropic "juvenile hormone" (JH). Lepidopteran genomes encode two very distinct FPPS paralogs, one of which ("type-II") is expressed almost exclusively in the JH-producing glands, the corpora allata...
January 2018: Insect Biochemistry and Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"