Add like
Add dislike
Add to saved papers

Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish.

Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation of individual proteins; rather, they are often caused by system-level perturbations in networks of molecular events. To fully understand the mechanisms of toxicity, it is necessary to recognize the interactions of molecules, pathways, and biological processes within these networks. The developing brain is a prime example of an extremely complex network, which makes developmental neurotoxicity one of the most challenging areas in toxicology. We have developed a systems toxicology method that uses a computable biological network to represent molecular interactions in the developing brain of zebrafish larvae. The network is curated from scientific literature and describes interactions between biological processes, signaling pathways, and adverse outcomes associated with neurotoxicity. This allows us to identify important signaling hubs, pathway interactions, and emergent adverse outcomes, providing a more complete understanding of neurotoxicity. Here, we describe the construction of a zebrafish developmental neurotoxicity network and its validation by integration with publicly available neurotoxicity-related transcriptomic datasets. Our network analysis identified consistent regulation of tumor suppressors p53 and retinoblastoma 1 (Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically induced developmental neurotoxicity. The developed network can be used to interpret transcriptomic data in a neurotoxicological context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app