Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Amyloid-β (1-42) peptide induces rapid NMDA receptor-dependent alterations at glutamatergic synapses in the entorhinal cortex.

Neurobiology of Aging 2021 September
The hippocampus and entorhinal cortex (EC) accumulate amyloid beta peptides (Aβ) that promote neuropathology in Alzheimer's disease, but the early effects of Aβ on excitatory synaptic transmission in the EC have not been well characterized. To assess the acute effects of Aβ1-42 on glutamatergic synapses, acute brain slices from wildtype rats were exposed to Aβ1-42 or control solution for 3 hours, and tissue was analyzed using protein immunoblotting and quantitative PCR. Presynaptically, Aβ1-42 induced marked reductions in synaptophysin, synapsin-2a mRNA, and mGluR3 mRNA, and increased both VGluT2 protein and Ca2+ -activated channel KCa2.2 mRNA levels. Postsynaptically, Aβ1-42 reduced PSD95 and GluN2B protein, and also downregulated GluN2B and GluN2A mRNA, without affecting scaffolding elements SAP97 and PICK1. mGluR5 mRNA was strongly increased, while mGluR1 mRNA was unaffected. Blocking either GluN2A- or GluN2B-containing NMDA receptors did not significantly prevent synaptic changes induced by Aβ1-42 , but combined blockade did prevent synaptic alterations. These findings demonstrate that Aβ1-42 rapidly disrupts glutamatergic transmission in the EC through mechanisms involving concurrent activation of GluN2A- and GluN2B-containing NMDA receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app