Add like
Add dislike
Add to saved papers

Extracellular Acidification Induces Lysosomal Dysregulation.

Cells 2021 May 14
Many invasive cancers emerge through a years-long process of somatic evolution, characterized by an accumulation of heritable genetic and epigenetic changes and the emergence of increasingly aggressive clonal populations. In solid tumors, such as breast ductal carcinoma, the extracellular environment for cells within the nascent tumor is harsh and imposes different types of stress on cells, such as hypoxia, nutrient deprivation, and cytokine inflammation. Acidosis is a constant stressor of most cancer cells due to its production through fermentation of glucose to lactic acid in hypoxic or normoxic regions (Warburg effect). Over a short period of time, acid stress can have a profound effect on the function of lysosomes within the cells exposed to this environment, and after long term exposure, lysosomal function of the cancer cells can become completely dysregulated. Whether this dysregulation is due to an epigenetic change or evolutionary selection has yet to be determined, but understanding the mechanisms behind this dysregulation could identify therapeutic opportunities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app