Add like
Add dislike
Add to saved papers

Preliminary analysis of immunoregulatory mechanism of hyperhomocysteinemia-induced brain injury in Wistar-Kyoto rats.

Hyperhomocysteinemia (HHcy) can be used as an independent risk factor for predicting cardiovascular disease, stroke and vitamin B12 deficiency. Patients with HHcy have elevated plasma homocysteine (Hcy) concentrations. Enhancing cerebrovascular permeability of substances such as Hcy and brain damage will synergistically increase the symptoms of hypertension, but the specific immune regulation mechanism is still not clear. The purpose of the present study was to preliminarily explore the immunomodulatory mechanism of brain damage caused by HHcy in Wistar-Kyoto (WKY) rats. A total of 60 WKYs were randomly divided into three groups: WKY control group (WKY-C group), WKY methionine group (WKY-M group) and WKY treatment group (WKY-T group; vitamin B6, B12 and folic acid were used as treatment), with 20 rats in each group. Physical examination of body weight, systolic blood pressure (SBP) and plasma Hcy content was performed routinely. The concentration of cytokines, including IL-6, IL-10, IL-17A and TGF-β, associated with T helper cell 17 (Th17) and regulatory T (Treg) cells and key regulator genes, including retinoic acid-related orphan receptor γ t (RORγt) and forkhead box P3 (FoxP3), were detected by ELISA, reverse transcription-quantitative PCR and western blotting. Th17/Treg lymphocytes were determined by flow cytometry. MRI scan was preliminarily used to detect the changes characteristic of the ischemic stroke. The results revealed that high methionine diets might have a significant effect on the body weight and SBP. The inflammatory response effect of Treg cells was significantly inhibited in the WKY-M group, and that of Th17 cells was upregulated when compared to the WKY-T group. Compared with the WKY-T group, the expression levels of IL-17A and RORγt in the WKY-M group were significantly upregulated, while the mRNA levels of FoxP3 in the WKY-M group were significantly downregulated. The diet intervention (including vitamins B6 and B12 and folic acid) could reduce the level of Hcy in the blood, but also reduce the inflammatory response and rectify the Treg/Th17 immune imbalance to ameliorate the brain tissue damage. In conclusion, the present study indicated that HHcy can promote inflammation by triggering Treg/Th17 immune imbalance to ameliorate the brain tissue damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app