Add like
Add dislike
Add to saved papers

In Silico Validation, Fabrication and Evaluation of Nano-Liposomes of Bistorta amplexicaulis Extract for Improved Anticancer Activity Against Hepatoma Cell Line (HepG2).

Current Drug Delivery 2021 March 17
BACKGROUND: Bistorta amplexicaulis of the genus Polygonum (Polygonaceae) has been reported for its antioxidant and anticancer activities. However, the low cellular uptake of the compounds in its extract limit their therapeutic application.

OBJECTIVES: The present study was aimed at developing a nanoliposomal carrier system for B. amplexicaulis extracts for its improved cellular uptake thus resulting in enhanced anticancer activity.

METHODS: Ultra Pressure Liquid Chromatography (UPLC) was used to identify major compounds in the plant extract. Nanoliposomes (NLs) were prepared using a thin-film rehydration method using DPPC, PEG2000DSPE and cholesterol, followed by characterization through several parameters. In vitro screening was performed against breast cancer cell line (MCF-7) and Hepatocellular carcinoma cell line (HepG-2) using MTT-assay. Raw extract and nanoliposomes were tested on Human Umbilical Vein Endothelial Cells (HUVEC). Moreover, molecular docking was performed to validate the data obtained through wet lab.

RESULTS: The UHPLC method identified gallic acid, caffeic acid, chlorogenic acid and catechin as the major compounds in the extract. The NLs with size ranging between 140-155 nm, zeta potential -16.9 to -19.8 mV and good polydispersity index of < 0.1 were prepared, with a high encapsulation efficiency of 81%. The MTT assay showed significantly (p > 0.05) high uptake and cytotoxicity of NLs as compared to the plant extract. Moreover, a reduced toxicity against HUVEC cells was observed as compared to the extract. Also, the docking of identified compounds suggested a favorable interaction to the SH2 domain of both STAT3 and STAT5.

CONCLUSION: Overall, the results suggested NLs as a potential platform that could be developed for the improved intracellular delivery of plant extract thus increasing their therapeutic outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app