Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rewarding Subjective Effects of the NMDAR Antagonist Nitrous Oxide (Laughing Gas) Are Moderated by Impulsivity and Depressive Symptoms in Healthy Volunteers.

BACKGROUND: Nitrous oxide (N2O) is an anesthetic gas with both therapeutic and abuse potential. Because N2O is an NMDA receptor (NMDAR) antagonist, its effects are expected to resemble those of the prototypical NMDAR antagonist, ketamine. In this study, we examined the subjective rewarding effects of N2O using measures previously employed in studies of ketamine. We also tested for moderation of these effects by bipolar phenotype, depressive symptoms, and impulsivity.

METHODS: Healthy volunteers were randomly assigned to either 50% N2O (n = 40) or medical air (n = 40). Self-reported rewarding (liking and wanting), and alcohol-like effects were assessed pre-, peri- and post inhalation.

RESULTS: Effect sizes for the various rewarding/alcohol-like effects of N2O were generally similar to those reported in studies of moderate-dose ketamine. Impulsivity moderated the subjective reinforcing (liking) effects of inhaled gas, while depressive symptoms moderated motivational (wanting [more]) effects. However, depression and impulsivity had opposite directional influences, such that higher impulsivity was associated with higher N2O liking, and higher depression, with lower N2O wanting.

CONCLUSION: To the extent that static (versus longitudinal) subjective rewarding effects are a reliable indicator of future problematic drug use, our findings suggests that impulsivity and depression may predispose and protect, respectively, against N2O abuse. Future studies should examine if these moderators are relevant for other NMDAR antagonists, including ketamine, and novel ketamine-like therapeutic and recreational drugs. Similarities between moderate-dose N2O and moderate-dose ketamine in the intensity of certain subjective effects suggest that N2O may, at least to some extent, serve as substitute for ketamine as a safe and easily implemented experimental tool for probing reward-related NMDAR function and dysfunction in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app