Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxaliplatin derived monofunctional triazole-containing platinum(II) complex counteracts oxaliplatin-induced drug resistance in colorectal cancer.

Bioorganic Chemistry 2021 Februrary
Oxaliplatin-based chemotherapy is the current standard of care in adjuvant therapy for advanced colorectal cancer (CRC). But acquired resistance to oxaliplatin eventually occurs and becoming a major cause of treatment failure. Thus, there is an unmet need for developing new chemical entities (NCE) as new therapeutic candidates to target chemotherapy-resistant CRC. Novel Pt(II) complexes were designed and synthesized as cationic monofunctional oxaliplatin derivatives for DNA platination-mediated tumor targeting. The complex Ph-glu-Oxa sharing the same chelating ligand of diaminocyclohexane (DACH) with oxaliplatin but is equally potent in inhibiting the proliferation of HT29 colon cancer cells and its oxaliplatin-resistant phenotype of HT29/Oxa. The in vivo therapeutic potential of Ph-glu-Oxa was confirmed in oxaliplatin-resistant xenograft model demonstrating the reversibility of the drug resistance by the new complex and the efficacy was associated with the unimpaired high intracellular drug accumulation in HT29/Oxa. Guanosine-5'-monophosphate (5'-GMP) reactivity, double-strand plasmid DNA cleavage, DNA-intercalated ethidium bromide (EB) fluorescence quenching and atomic force microscopy (AFM)-mediated DNA denaturing studies revealed that Ph-glu-Oxa was intrinsically active as DNA-targeting agent. The diminished susceptibility of the complex to glutathione (GSH)-mediated detoxification, which confers high intracellular accumulation of the drug molecule may play a key role in maintaining cytotoxicity and counteracting oxaliplatin drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app