Add like
Add dislike
Add to saved papers

Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan.

Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app