Add like
Add dislike
Add to saved papers

Fractographic analysis of separated endodontic file designs.

Endodontic rotary files are cutting instruments used to perform root canal procedures within a tooth interior. Focusing on quantitative fractographic analysis increases necessary, clinical performance understanding of file separation failure. This research employed controlled, dynamic testing to failure of commercial rotary files, analyzing the fractographic, forensic characteristics in relation to Weibull reliability determination, considering: (1) design analysis; (2) stress concentrations; (3) times to failure; (4) number of cycles to failure (NCF). Ex vivo testing included three file designs, each having constant tip size (0.035 mm), taper (0.06 mm/mm), and length (25 mm). Files were individually tested using an electric, torque-controlled handpiece, rotating within a standardized, simulated canal until fracture separation occurred. Fractographic analysis, including critical measurements, was conducted using the scanning electron microscope (SEM) (PhenomProX, PhenomWorld, NL). Weibull statistical analysis established reliability factors per design group. Fractographic analysis identified separation fractures, processing inclusions, flexural-fatigue striations, and stress concentrations at flute pitches. Calculated NCF median values (1277-EE; 899-VB; 713-PI) demonstrated significant statistical differences among groups (p < 0.001). Separated apical fragments yielded statistically significant differences (p ≤ 0.05) for varying file design groups. Weibull moduli among groups were statistically equivalent. Fractographic analysis exposed a presence of multiple failure factors in addition to defect distribution, governing cyclic fatigue failure originating at stress concentration points irrespective of file design. Fractographic analysis indicated that a change in file design, specifically at the working edges, in addition to improved surface finish, has the potential of reducing failures by lowering points of stress concentration and reducing fracture initiating surface cracks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app