Add like
Add dislike
Add to saved papers

Guided bone regeneration by the development of alendronate sodium loaded in-situ gel and membrane formulations.

Biocompatible materials applied in guided bone regeneration are needed to prevent leakage caused by the invasion of peripheral epithelium. (2.1) The aim of this study is to develop a thermosensitive in situ gel system containing alendronate sodium loaded PLGA nanoparticles and alendronate sodium loaded membranes for guided bone regeneration. Thermosensitive Pluronic F127 gel system was preferred to prevent soft tissue migration to the defect site and prolong the residence time of the nanoparticles in this region. In situ gel system was combined with membrane formulation to enhance bone regenaration activity. Efficacy of combination system was investigated by implanting in 0.5 × 0.5 cm critical size defect in tibia of New Zealand female rabbits. According to the histopathological results, fibroblast formations were found at defect area after 6 weeks of post implantation. In contrast, treatment with the combination of in-situ gel containing nanoparticles with membrane provided woven bone formation with mature bone after 4 weeks of post implantation. As a results, the combination of in-situ gel formulation containing alendronate sodium-loaded nanoparticles with membrane formulation could be effectively applided for guided bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app