Add like
Add dislike
Add to saved papers

Lysophosphatidic acid increased infarct size in the early stage of cerebral ischemia-reperfusion with increased BBB permeability.

BACKGROUND: We investigated whether exogenous lysophosphatidic acid (LPA), a phospholipid extracellular signaling molecule, would increase infarct size and blood-brain barrier (BBB) disruption during the early stage of cerebral ischemia-reperfusion, and whether it works through Akt-mTOR-S6K1 intracellular signaling.

MATERIAL AND METHODS: Rats were given either vehicle or LPA 1 mg/kg iv three times during reperfusion after one hour of middle cerebral artery (MCA) occlusion. In another group, prior to administration of LPA, 30 mg/kg of PF-4708671, an S6K1 inhibitor, was injected. After one hour of MCA occlusion and two hours of reperfusion the transfer coefficient (Ki ) of 14 C-α-aminoisobutyric acid and the volume of 3 H-dextran distribution were determined to measure the degree of BBB disruption. At the same time, the size of infarct was determined and western blot analysis was performed to determine the levels of phosphorylated Akt (p-Akt) and phosphorylated S6 (pS6).

RESULTS: LPA increased the Ki in the ischemic-reperfused cortex (+43%) when compared with Control rats and PF-4708671 pretreatment prevented the increase of Ki by LPA. LPA increased the percentage of cortical infarct out of total cortical area (+36%) and PF-4708671 pretreatment prevented the increase of the infarct size. Exogenous LPA did not significantly change the levels of p-Akt as well as pS6 in the ischemic-reperfused cortex.

CONCLUSION: Our data demonstrate that the increase in BBB disruption could be one of the reasons of the increased infarct size by LPA. S6K1 may not be the major target of LPA. A decrease of LPA during early cerebral ischemia-reperfusion might be beneficial for neuronal survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app