Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mimicking the temperature gradient between the sow's oviduct and uterus improves in vitro embryo culture output.

This work was designed to determine temperature conditions within the reproductive tract of the female pig and study their impact on ARTs. Temperatures were recorded using a laparo-endoscopic single-site surgery assisted approach and a miniaturized probe. Sows and gilts were used to address natural cycle and ovarian stimulation treatments, respectively. According to in vivo values, IVF was performed at three temperature conditions (37.0°C, 38.5°C and 39.5°C) and presumptive zygotes were cultured in these conditions for 20 h, while further embryo culture (EC) (21-168 h post-insemination) was maintained at 38.5°C. After 20 h, different fertility parameters were assessed. During EC, cleavage and blastocyst stages were evaluated. Sperm membrane fluidity at the experimental temperatures was studied by using differential scanning calorimetry and fluorescence recovery after photobleaching techniques. An increasing temperature gradient of 1.5°C was found between the oviduct and uterus of sows (P < 0.05) and when this gradient was transferred to pig in vitro culture, the number of poly-nuclear zygotes after IVF was reduced and the percentage of blastocysts was increased. Moreover, the temperature transition phase for the boar sperm membrane (37.0°C) coincided with the temperature registered in the sow oviduct, and sperm membranes were more fluid at 37.0°C compared with those of sperm incubated at higher temperatures (38.5°C and 39.5°C). These data suggest that there may be an impact of physiological temperature gradients on human embryo development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app