Add like
Add dislike
Add to saved papers

Marine bacterial DNase curtails virulence and disrupts biofilms of Candida albicans and non - albicans Candida species.

Biofouling 2019 November 30
Candida is one of the most prevalent fungal pathogens in clinical settings which form antibiotic-resistant biofilms on biomedical devices. Hence, there is a need for non-antimicrobial alternatives to combat these infections. The present study investigates the anti-biofilm effect of marine bacterial DNase by targeting the eDNA present in the biofilms of Candida spp. A strain of Vibrio alginolyticus (AMSII) which showed enhanced DNase activity was isolated from marine sediment. Treatment of young and mature Candida biofilms with purified marine bacterial DNase (MBD) caused a 60-80% reduction in biofilm biomass, similar to treatment with DNase I from Bovine pancreas. Scanning electron microscopy showed that MBD significantly reduced the formation of biofilms on urinary catheters and more importantly prevented the virulent yeast to hyphae dimorphic switch in C. albicans . The present study identified a potential non-antibiotic alternative therapy to eradicate Candida biofilms and can be used to develop enzyme fabricated antifouling indwelling medical devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app