Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons.

INTRODUCTION: Second generation antipsychotic (AP)s remain the gold-standard treatment for schizophrenia and are widely used on- and off-label for other psychiatric illnesses. However, these agents cause serious metabolic side-effects. The hypothalamus is the primary brain region responsible for whole body energy regulation, and disruptions in energy sensing (e.g. insulin signaling) and inflammation in this brain region have been implicated in the development of insulin resistance and obesity. To elucidate mechanisms by which APs may be causing metabolic dysregulation, we explored whether these agents can directly impact energy sensing and inflammation in hypothalamic neurons.

METHODS: The rat hypothalamic neuronal cell line, rHypoE-19, was treated with olanzapine (0.25-100 uM), clozapine (2.5-100 uM) or aripiprazole (5-20 uM). Western blots measured the energy sensing protein AMPK, components of the insulin signaling pathway (AKT, GSK3β), and components of the MAPK pathway (ERK1/2, JNK, p38). Quantitative real-time PCR was performed to determine changes in the mRNA expression of interleukin (IL)-6, IL-10 and brain derived neurotrophic factor (BDNF).

RESULTS: Olanzapine (100 uM) and clozapine (100, 20 uM) significantly increased pERK1/2 and pJNK protein expression, while aripiprazole (20 uM) only increased pJNK. Clozapine (100 uM) and aripiprazole (5 and 20 uM) significantly increased AMPK phosphorylation (an orexigenic energy sensor), and inhibited insulin-induced phosphorylation of AKT. Olanzapine (100 uM) treatment caused a significant increase in IL-6 while aripiprazole (20 uM) significantly decreased IL-10. Olanzapine (100 uM) and aripiprazole (20 uM) increased BDNF expression.

CONCLUSIONS: We demonstrate that antipsychotics can directly regulate insulin, energy sensing, and inflammatory pathways in hypothalamic neurons. Increased MAPK activation by all antipsychotics, alongside olanzapine-associated increases in IL-6, and aripiprazole-associated decreases in IL-10, suggests induction of pro-inflammatory pathways. Clozapine and aripiprazole inhibition of insulin-stimulated pAKT and increases in AMPK phosphorylation (an orexigenic energy sensor) suggests impaired insulin action and energy sensing. Conversely, olanzapine and aripiprazole increased BDNF, which would be expected to be metabolically beneficial. Overall, our findings suggest differential effects of antipsychotics on hypothalamic neuroinflammation and energy sensing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app